
Learn Blockchain Programming

Ali Dorri

Traditional Programming

Code to be
executed

Request

Response

• Server runs the code
• User may or may not know the code
• Complicated algorithms
• Database

DApps: Distributed Applications

Open Source: All nodes have to verify the contract to verify transaction and
state in blockchain.

Decentralized

Incentive: Normally use token/assets to fuel the code

Algorithm/Protocol

Immutable

DApps: Distributed Applications

Different Blockchains, Different Platforms

• To store its transaction, each node has to verify two other transactions

• Self-scaling

• Reduce cost and delay

• Different blockchains

• Can be used to build blockchain and evaluate performance

• Open source

• Influenced by C++, Java, and Python

• Runs on Ethereum Virtual Machine (EVM)

• EVM: The computer that all full nodes agree to run, i.e., runtime
environment for smart contract

• All nodes perform the code execution

• Write Solidity code online in: https://remix.ethereum.org

Solidity

https://remix.ethereum.org/

• Each account has an address:
o External accounts: determined by public key
o Smart contract account: creator address and nonce

• Each account has balance in Ether (in “Wei” to be exact, 1
ether is 10**18 wei)

Accounts

• Gas Limit
• Gas Price

Gas

Transaction fee = Gas limit * Gas price

Gas limit: Amount of liters of gas for a car
Gas price: Cost of liter of gas

Solidity

https://solidity.readthedocs.io/en/develop/introduction-to-smart-contracts.html

You can define Structs in solidity

struct Person {
uint age;
string name;

}

// Array with a fixed length of 2 elements:
uint[2] fixedArray;

// another fixed Array, can contain 5 strings:
string[5] stringArray;

// a dynamic Array - has no fixed size, can keep growing:
uint[] dynamicArray;

You can define Arrays in solidity as well

• Define Function
function setAge(string _name, uint _age) {

}

• Public
o Your contract can be called by anyone or any other contract
o Default
o Security issue

Function visibility

• Private
o Only functions within the contract can call the function

function setAge(string _name, uint _age) private {

}

• Internal
o Similar to private, but accessible to contracts that inherit from this contract

• External
o Similar to public, but can “only” be called outside the contract

• Return value
string greeting = "What's up";
function sayHello() public returns (string) {
return greeting;
}

• Function modifiers

• View: the function only views data, but not modifying any value, i.e., only
read action is performed.

• Pure: the function does not access data in blockchain, i.e., the return value
only depends on the input values.

function _multiply(uint a, uint b) private pure returns
(uint) {
return a * b;

}

• Mapping (keyàvalue)

mapping (address => uint) public accountBalance;

mapping (uint => string) userIdToName;

• How to find out the address of the person who called the transaction?

msg.sender

• Running a function with a condition:

function sayHiToVitalik(string _name) public returns (string) {
require(keccak256(_name) == keccak256(”Ali"));
return "Hi!";
}

Contract inheritance

contract Doge {
function catchphrase() public returns (string) {
return "So Wow CryptoDoge";
}}

contract BabyDoge is Doge {
function anotherCatchphrase() public returns (string) {
return "Such Moon BabyDoge";
} }

import "./someothercontract.sol";

Ownable

• “Ownable” is a contract from OpenZeppelin.

• OpenZeppelin is a library for secure smart contract development.

• Has a modifier named “onlyOwner”

https://github.com/OpenZeppelin/openzeppelin-solidity

contract MyContract is Ownable {

function likeABoss() external onlyOwner {
LaughManiacally("Muahahahaha");
} }

https://github.com/OpenZeppelin/openzeppelin-solidity

Payable

• Marks a contract as payable

contract OnlineStore {
function buySomething() external payable {

require(msg.value == 0.001 ether);

transferThing(msg.sender);
} }

• Withdraw

uint itemFee = 0.001 ether;
msg.sender.transfer(msg.value - itemFee);

What to do after writing the smart code?

1.The address of the smart contract
2.The function you want to call, and
3.The variables you want to pass to that function.

To interact with a contract you need:

JSON files

• Maintains a set of Ethereum nodes

• Connects you to the Ethereum

• Use the address in your API.

Infura

https://infura.io/

var web3 = new Web3(new Web3.providers.WebsocketProvider
("wss://mainnet.infura.io/ws"));

• Browser extension for chrome and Firefox

• Allows users to manage their Ethereum accounts while
connecting to websites.

• As a developer, if you want the users to interact with
your DApp using website, you need to make it
metamask-compatible.

• Check if the user has installed metamask

Metamask

• Your contract in JSON format

• Clarifies how to call functions

Contract Application Binary Interface (ABI)

Private Ethereum testnet

• Install Node.js,
o brew install node

• Install compiler
o npm install –g solc

• Install Ethereum
o brew tap ethereum/ethereum brew
o install ethereum

Create a
genesis.JSON file

https://medium.com/cybermiles/running-a-quick-ethereum-private-network-for-experimentation-and-testing-6b1c23605bce

Initialize the first node

geth --datadir ~/gethDataDir/ init genesis.json

Start the first node

geth --datadir ./myDataDir --networkid 1114 console 2>> myEth.log

Create account

personal.newAccount("<YOUR_PASSPHRASE>")

Check account

Eth.accounts

Checking account balance Eth.getbalance(eth.coinbase/eth.accounts[0])

Start mining Miner.start(1)

Add another node

geth --datadir ./peer2DataDir --networkid 1114 --port 30304
console 2>> myEth2.log

Node address admin.nodeInfo.enode

Verify peers Admin.peers

How to create your own cryptocurrency (ICO)?

Token

• Token is a smart contract that follows some common rules and
implements a standard set of functions.

Ping me at ali.dorri@unsw.edu.au

